Finding Rows In Numpy Array With Specific Condition Efficiently
I have two numpy array 2D. What I want to do is to find specific rows of np_weight in the np_sentence. For example: #rows are features, columns are clusters or whatever np_weight =
Solution 1:
Here is one approach: The function f
below creates a mask the same shape as weight
(plus one dummy row of False
s) marking the top five entries in each column with True
.
It then uses np_sentence
to index into the mask and counts the True
for each column,row pair and compares with the threshold two.
Only complication: We must suppress duplicate values in rows of np_sentence
. To that end we sort the rows and then direct each index which equals its left neighbor to the dummy row in the mask.
This function returns a mask. The last line of the script demonstrates how to convert that mask to indices.
import numpy as np
deff(a1, a2, n_top, n_hit):
N,M = a1.shape
mask = np.zeros((N+1,M), dtype=bool)
np.greater_equal(
a1,a1[a1.argpartition(N-n_top, axis=0)[N-n_top], np.arange(M)],
out=mask[:N])
a2 = np.sort(a2, axis=1)
a2[:,1:][a2[:,1:]==a2[:,:-1]] = N
return np.count_nonzero(mask[a2], axis=1) >= n_hit
a1 = np.matrix("""[[9.96859395 8.65543961 6.07429382 4.58735497]
[3.21776471 8.33560037 2.11424961 8.89739975]
[9.74560314 5.94640798 6.10318198 7.33056421]
[6.60986206 2.36877835 3.06143215 7.82384351]
[9.49702267 9.98664568 3.89140374 5.42108704]
[1.93551346 8.45768507 8.60233715 8.09610975]
[5.21892795 4.18786508 5.82665674 8.28397111]]"""[2:-2].replace("]\n [",";")).A
a2 = np.matrix("""[[2 5 1]
[1 6 4]
[0 0 0]
[2 3 6]
[4 2 4]]"""[2:-2].replace("]\n [",";")).A
print(f(a1,a2,5,2))
from itertools import groupby
from operator import itemgetter
print([[*map(itemgetter(1),grp)] for k,grp in groupby(np.argwhere(f(a1,a2,5,2).T),itemgetter(0))])
Output:
[[FalseTrueTrueTrue]
[ TrueTrueTrueTrue]
[FalseFalseFalseFalse]
[ TrueFalseTrueTrue]
[ TrueTrueTrueFalse]]
[[1, 3, 4], [0, 1, 4], [0, 1, 3, 4], [0, 1, 3]]
Post a Comment for "Finding Rows In Numpy Array With Specific Condition Efficiently"